¤w¦b²Ä¤@­¶¡@1¢x2¢x3¢x4¢x5¢x6¡@¦¸­¶

 


­º­¶ | ·j´M

¡D­ì¸ü©ó¼Æ¾Ç¶Ç¼½²Ä¤G¨÷²Ä¥|´Á
¡D§@ªÌ·í®É¥ô±Ð©ó¬ü°ê­³®¦¦{¥ß¤j¾Ç¼Æ¾Ç¨t;¬ü°ê±K¦è®Ú¤j¾Ç¼Æ¾Ç¨t
 

½Í½Í¤RªQ¹Lµ{ (Poisson Process)

®]¦Û°·;¥Û¥ò©Ý

 
 

¤RªQ¹Lµ{¬O°¨¥i¤Ò¹Lµ{ (Markov Proscess) ¤¤³Ì²³æªº¤@ºØ¡F ¥¦ªºÀ³¥Î«Ü¼s¡A©Ò¥H¦b¤@¯ëªº¾÷²v©M§@·~¬ã¨sªº±Ð¬ì®Ñ¤¤³£·|°Q½×¨ì¡C ¥Ñ©ó¥¦ªº­«­n©Ê¡A§Ú­Ì§â³o­Ó°ÝÃD®³¥X¨Ó³æ¿W¦aµ¹¤j®a¤¶²Ð¤@¤U¡C ³oùةҥΨ쪺¤èªk¥þ¬O«Ü²Lªñªº©M«Üª½Ä±ªº¡A¤@¯ëªº¤j¾Ç¥Í³£À³¸Ó¯à¤F¸Ñªº¡C

¥H¤U¤À¤T³¡¥÷¡A²Ä¤@¸`¥ý½Í¤G¶µ¦¡¤À§Gªº¤RªQ¹Gªñ (Poisson approximation) ²Ä¤G¸`¤¶²Ð¤RªQ¹Lµ{,²Ä¤T¸`¦A°Q½×¤@¨Ç¤RªQ¹Lµ{ªº©Ê½è¡C

¦bªþ¿ý A¡BB ©M C ùاڭ̽ͤ@ÂI¥¿¤å¤¤¬Ù¥hªº§÷®Æ¡C


¤@¡B

§Ú­Ì·Q¤j®a³£¤wª¾¹D¦pªG§Ú­Ì¿W¥ß¦a­«½Æ¤@¶µ¹êÅç n ¦¸¡A ¨ä¨C¦¸ªº¦¨¥\²v³£¬O p, 0<p<1¡A «h¦b n ¦¸¹êÅ礤Á`¦@¦¨¥\ªº¦¸¼Æ X ·|¦³¤@­Ó¤G¶µ¤À§G, ¤]´N¬O»¡¦¨¥\ k ¦¸ªº¾÷²v¬O

\begin{displaymath}
P(X=k)={n \choose k}p^kq^{n-k}, \quad \mbox{{\fontfamily{cwM...
...fontfamily{cwM0}\fontseries{m}\selectfont \char 184}} \, q=1-p
\end{displaymath} (1)

³oùتº n ©M p¡A§Ú­ÌºÙ¬°°Ñ¼Æ (parameter)¡C

¦b¦³¨ÇÀ³¥Îªº°ÝÃD¤¤¡An ­È«Ü¤j¦Ó p ­È«Ü¤p¡CÄ´¦p¦b¤@­Ó¤j«°¥«ùØ¡A §Ú­Ì½Õ¬d¤@ºØµ}¦³ªº¯f¯g¡C°²¦p¨C­Ó¤H±o¯fªº¾÷²v³£¬O¤@¼Ë 1/500¡A §Ú­ÌÀH¾÷ªº¿ï¤@¤d¤HÀˬd¡A°Ý³o¤@¤d¤H¤¤¦³¤Q­Ó¤H±o¯fªº¾÷²v¬O¦h¤Ö¡C À³¥Î¤G¶µ¤À§G¡A§Ú­Ì±o¨ì

\begin{displaymath}
P(X=10)={1000\choose10}(\frac{1}{500})^{10}(\frac{499}{500})^{990}
\end{displaymath}

½Ö³£¥i¥H¬Ý¥X³o¶µ­pºâ«Ü½ÆÂø¡A¦ý¬O³o®É§Ú­Ì¥i¥H¥Î¤RªQ¹Gªñªk¥h²¤Æ­pºâ¡C ¦b¤½¦¡¤´???¤¤¡A¦pªG§Ú­Ì¥O

\begin{displaymath}
\lambda =np \quad \mbox{{\fontfamily{cwM1}\fontseries{m}\selectfont \char 67}} \quad p = \frac{\lambda}{n},
\end{displaymath}

«h

\begin{eqnarray*}
{n \choose k}p^kq^{n-k} &=& \frac{n(n-1)\cdots(n-k+1)}{k!} (\f...
...\cdots \frac{(n-k+1)}{n} \cdot \frac{1}{(1-\frac{\lambda}{n})^k}
\end{eqnarray*}


·í $n \longrightarrow \infty$ ®É¡A¦pªG§Ú­Ìºû«ù £f ¤£ÅÜ ¡]·íµM p ­È­nÁͪñ©ó¹s¡^©M k ­È¤£ÅÜ¡Aª`·N

\begin{eqnarray*}
&& \frac{n-j}{n} \longrightarrow 1 \quad \mbox{{\fontfamily{cw...
... 1 \, , \quad (1-\frac{\lambda}{n}) \longrightarrow e^{-\lambda}
\end{eqnarray*}


©Ò¥H
\begin{displaymath}
{n \choose k}p^kq^{n-k} \longrightarrow \frac{\lambda^k}{k!}e^{-\lambda}
\end{displaymath} (2)

¤j®a¥i¯à¤]³£¤wª¾¹D¡A¦pªG¤@­ÓÀH¾÷ÅÜ¼Æ Y º¡¨¬

\begin{displaymath}
P(Y=k)=\frac{\lambda^k}{k!}e^{-\lambda} \quad
k=0,1,2 \cdot...
...har 77}{\fontfamily{cwM0}\fontseries{m}\selectfont \char 1}} )
\end{displaymath}

§Ú­Ì´N»¡ Y ¦³¤@­Ó¤RªQ¤À§G (Poisson distribution)¡A ¦¹¦a¥¦ªº°Ñ¼Æ¬O £f¡C (2)¦¡«ü¥Ü°²¦p§Ú­Ìºû«ù $np = \lambda$ ªºÃö«Y¡A ¦Ó £f ¬O¤@­Ó¤£¤Ó¤j¤]¤£¤j¤pªº±`¼Æ¡A«h·í n «Ü¤jªº®É­Ô ¡]·íµM p ´N«Ü¤p¡^¡A¹ï©ó¥ô¦ó¤@­Ó©T©wªº k

\begin{displaymath}
{n \choose k}p^kq^{n-k} \approx \frac{\lambda^k}{k!}e^{-\lambda}
\end{displaymath}

©Ò¥H³o®É§Ú­Ì¥i¥H¥Î¤RªQ¤À§G¨Ó¹Gªñ (approximate) ¤G¶µ¤À§G $({n \choose k}p^kq^{n-k} )$¡A Ä´¦p¥H¤W½Í¨ìªº

\begin{displaymath}
P(X=100)={1000 \choose 10}(\frac{1}{500})^{10}(\frac{499}{500})^{999}
\approx \frac{2^{10}}{10!}e^{-2}
\end{displaymath}

¨ä¹ê¦b­pºâ(2)¦¡®É¦pªG§Ú­Ì©ñÃP $np = \lambda$ ªº±ø¥ó¡A ¦Ó¥u­n¨D $np \longrightarrow \lambda$ ·í $n \longrightarrow \infty$ ®É¡A «h (2) ¦¡¤´µM¦¨¥ß,¥u¤£¹LÃÒ©úµy¬°Ác¤@ÂI¡C

±q(2)¦¡¤¤¡A§Ú­Ì¥i¥H¬Ý¥X¤RªQ¤À§G©M¤G¶µ¤À§GªºÃö«Y«D±`±K¤Á¡A ³o¤@ÂI§Ú­Ì¦b²Ä¤T¸`ùØ­n¥Î¨ì¡C§Ú­Ì¦b³oùØÀ³¸Ó¶¶«K´£¨ì¡A ·í n «Ü¤j®É¦pªG p ­È¤£¬O«Ü¤p¡]¤]¤£«Ü±µªñ©ó 1¡^¡AÄ´¦p $p=\frac{1}{2}$¡A «h§Ú­ÌÀ³·í¥Î±`ºA¤À§G¨Ó¹Gªñ¤G¶µ¤À§G¡A³o¬O©Ò¿×ªº¤¤¥¡·¥­­©w²z¡C

 
¹ï¥~·j´MÃöÁä¦r¡G
¡D°¨¥i¤Ò¹Lµ{
¡D¤G¶µ¤À§G
¡D¤RªQ¤À§G
¡D±`ºA¤À§G
¡D¤¤¥¡·¥­­©w²z
¡D«ü¼Æ¤À§G

¤w¦b²Ä¤@­¶¡@1¢x2¢x3¢x4¢x5¢x6¡@¦¸­¶

¦^­¶­º
 
¡]­Y¦³«ü¥¿¡BºÃ°Ý¡K¡K¡A¥i¥H¦b¦¹ ¯d¨¥ ©Î ¼g«H µ¹§Ú­Ì¡C¡^
EpisteMath

EpisteMath (c) 2000 ¤¤¥¡¬ã¨s°|¼Æ¾Ç©Ò¡B¥x¤j¼Æ¾Ç¨t
¦Uºô­¶¤å³¹¤º®e¤§µÛ§@Åv¬°­ìµÛ§@¤H©Ò¦³


½s¿è¡G±d©ú°a ¢A ø¹Ï¡G²¥ßªY ³Ì«á­×§ï¤é´Á¡G4/26/2002